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PARKING ORBITS ALINED USING PLANETARY OBLATENESS
FOR DIRECT MARS MISSIONS BETWEEN 1975 AND 1988

By Joseph R. Thibodeau III and Gregory A. Zambo

SUMMARY

A study was made of the feasibility of using the oblateness of the
' planetary gravitational field to aline the parking orbit during direct,
round-trip capture missions to Mars between 1975 and 1988. An analytical
technique was used to define the possible configurations of elliptical
parking orbits which shift into alinement for departure and require
no discrete propulsive maneuvers. Parking orbits were found for the
minimum total AV members of both the conjunction and the opposition
classes of Mars missions.

Results indicate that moderate to highly elliptic parking orbits
(eccentricity from 0.4 to 0.8) can be used at Mars for both classes
of missions, and both the planetary arrival and departure maneuvers will
occur at periapsis. The inclinations commonly occur in narrow bands
which are widely distributed over the range from 0° to 180°. The
highest eccentricity orbits have low inclinations and may be either
posigrade or retrograde with respect to the planetary axis of rotation.



INTRODUCTION

Comtemplating the possibility of manned expeditions to the near
planets, one often considers the problem: What kind of parking orbit
is best suited for a manned orbital mission? A moment's reflection
reveals this question is nearly impossible to answer. Ultimately, the
design of the parking orbit must depend on limitations imposed by the
hardware, the mission objectives, and the physical laws of nature, and,
like the mission itself, can only be determined by intensive study of
many design elements.

Some insight into the problem can be gained by studying the behavior
of the parking orbit and the resultant operational requirements imposed
by various configurations of the parking orbit. This paper takes a much
narrower view of this problem by studying the behavior of parking
orbits constrained to the motion which results from the oblateness of
the planet's gravitational field. These parking orbits can be referred
to loosely as the elliptical regressing parking orbit. They require

no discrete propulsive maneuvers for orbital alinement.® These maneuvers
are here defined to be either discrete or combined with the planetary
capture and escape maneuvers.

Of course, the idea of using planetary oblateness for parking orbit
alinement is not new. There are various allusions to it in the literature.
The remarks are often connected with other considerations in trajectory
design. A discussion of the technique of using oblateness for orbit
alinement is presented in references 1, 2, 3, and k..

The authors feel these orbits, as a group, exhibit many interesting
properties which make them worthy of study on their own merits; therefore,
a detailed study of their behavior and characteristics was undertaken.
This report documents the results of this study.

The main contribution of the paper is to indicate the feasibility
of using oblateness for parking orbit alinement, the implications of this
technique, its limitations, and its flexibility for application during
preliminary analysis of orbital missions to Mars.

Basically, the use of planetary oblateness for orbital alinement
implies the selection of the orbital elements of the parking orbit so
that the resulting nodal and apsidal motion will shift the orbit into

aExcept perhaps those required to correct guidance and navigational
uncertainties. (Consideration of these problems would be required during
the course of any operational trajectory and are beyond the scope of
this paper.)




proper alinement for departure on the intended date. Employing this

type of orbit allows the use of coplanar periapsis impulses for both the
orbital capture and escape maneuvers. In many cases, although not
always, AV costs may be reduced because highly elliptic orbits can be
used at the target planet and because the orbital capture and escape
maneuvers are coplanar, thereby reducing or eliminating the need of plane
changes and flight-path angle corrections. This type of orbit represents
an excellent point of departure for further study of parking orbits
which may require a combination of perturbations and corrective
propulsive maneuvers for orbital alinement to achieve both the lowest
possible total mission AV and the best trade-off between other mission
design criteria.

In order to establish norms for the behavior of the parking orbit,
the orbital missions to Mars were examined for each Earth orbital
launch opportunity from 1975 to 1988. The primary emphasis was to find
out how many different elliptical orbits are available and what are the
characteristics of the ones that exhibit the highest eccentricities.
Also of interest was the effect of the Earth orbital launch window and
resultant variations of the geometry of planetary approach and departure.
The emphasis of this investigation was to find out if the parking orbits
exhibit smooth variations in characteristics and if they are available
over a wide range of both the stay-time and the geometry of approach
and departure.

If this approach allows the use of highly eccentric orbits without
the need of auxiliary propulsive maneuvers, this fact can have a
fundamental impact on the design of orbital missions for which small
excursion vehicles can be used for close orbital reconnaissance or
landing on the surface of the planet.

The command spacecraft of an interplanetary expedition is large and
must therefore be considered as a space station or platform which serves
as a base from which small excursion vehicles are used to complete
mission objectives. There is a definite possibility that the command
spacecraft could be placed in an elliptical parking orbit of the type
investigated in this report. A small excursion vehicle could then be
separated from the command spacecraft, establish a different orbit
consistent with the mission objectives and crew safety, and return to the
command spacecraft.

This is the main reason why this study was undertaken. Of course,
much work is needed to determine the feasibility of this approach.

Design of the parking orbit is, of course, meaningful only in the
context of complete mission profiles. The missions must be defined

before the parking orbit can be studied. For this study, the direct,
round-trip Mars capture missions were investigated and the minimum AV

t



trajectories associated with both opposition and conjunction classes
of Mars missions were selected. These two classes of missions are
probably indicative of both the best and the worst possible cases
where oblateness could conceivably be used for orbital alinement, mostly
because the opposition class missions have very short stay-times, from
10 to 40 days, and because the conjunction class missions have very
long stay~times, from 300 to 500 days. (These missions are referred
to later as simply the "long" or "short" missions. The long missions
are sometimes called minimum AV because the heliocentric trajectories
are the two-impulse, absolute minimum AV, or near-Hohmann transfers.
The short missions exhibit only local minimums in total mission AV
when certain of the trajectory parameters are constrained (i.e., the
flight times or earth entry velocity).

The heliocentric trajectories, launch dates, and trip times were
selected to yield missions with the lowest possible total mission AV
requirements. The process of mission selection was done automatically
by a mission scanning program developed by Mr. E, W. Henry of the
Advanced Mission Design Branch. The authors wish to thank Mr. Henry
for the data supplied by this program.




ANALYSIS

Orbital missions to Mars were examined for each Earth orbital
launch opportunity from 1975 to 1988. The analysis of these missions
was performed in two steps. The first step was simply to find the
missions and define the charscteristics of the heliocentric tra-
jectories, the launch dates, and the flight times. Both the opposition
and conjunction classes of missions were found. This phase of the
analysis was greatly facilitated by an automatic mission scanning
program which produced the launch dates and flight times for these
missions. This program, documented in reference 4, produced optimum
launch dates and flight times for these missions based on the selection
criterion of minimum total mission AV. The two types of missions
selected are illustrated in figures 1 and 2. The conjunction class
mission consists of two near-Hohmann transfers separsted by an appro-
priate orbital stay of from 300 to 500 days. The opposition class
missions are the so called "short-long" missions for which the out-
bound leg subtends a heliocentric transfer angle less than 180°, and

the return leg swings inside the orbit of Venus and subtends an angle
of about 300°.

The second step was simply to find the parking orbits which fit
these missions. This step was accomplished by using the conic inter-
planetary mission planning program documented in reference 5. This
program was modified by the authors to compute matched-conic solutions
to the possible configurations of an elliptical regressing parking
orbit at Mars. The fundamental ground rule for this part of the
analysis was to find parking orbits which require no discrete propulsive
maneuvers for orbital alinement. A complete discussion of the method
of calculation of these orbits and the matching process is presented in
references 3, 7, and 8.

The effect of the Earth orbital launch window, or mission window,
and the resultant variations of the geometry of planetary approach and
departure were also of interest. The primary interest was to see if
the solutions would be uniform and predictable despite changes in the
approach and departure asymptotes.

Matched-conic solutions for the minimum energy missions were
calculated at 10-day increments through 50-day launch windows at Earth.

The outbound and return flight times and the orbital stay time at Mars

were held constant; thus, a S50-day transearth-injection (Earth-rcturn)

window at Mars was produced. There are various arguments for and
against providing a return window at Mars; therefore, both a 50-day and
a zero-day transearth or return launch window from Mars orbit are shown.
The 50-day return window is shown by the solid lines of figure 3 and
the zero-day return window is indicated by the dashed lines. Note that



the Earth entry velocity for the zero-day return window is constant.
In the case of the zero-day return window, the orbital stay time is
adjusted so that the launch from the Mars parking orbit always occurs
at the same time, and the return leg of the mission is, of course,
always the same. Providing a 50-day Earth-return window at Mars re-
quires 1500 fps of additional AV.

Matched-conic solutions for the short-stay-time missions were
calculated at 10-day increments through 40-day launch windows at Earth.
The outbound and return flight times and the orbital stay time (30 days)
at Mars were held constant. By holding the flight times constant, a
40-day Farth-return window at Mars was effectively produced. For these
short missions there is no best time to leave Mars for a return to
Earth. The best time to leave Mars is as soon as possible after arrival
there. In other words, the velocity requirements for Mars departure and
the Earth entry velocity are rapidly increasing with stay time, and the
longer one remains in parking orbit, the more it costs to return home.
The best stay is therefore zero days. For this study then, 30 days was
somewhat arbitrarily chosen because this is the minimum orbital stay
time which permits studying oblateness effects and the feasibility of
using regressing parking orbits during short orbital missions to Mars.

Scanning Mars Orbital Missions Between 1975 and 1988

The results of the mission scan are presented in figures 4 and 5.
These figures show the variation in mission velocity requirements from
window to window and thereby facilitate direct comparison between both
individual mission windows and both classes of missions. Although not
shown in figure 5, there are nearly 100 days during the 1981, 1983,
and 1984 short missions for which the velocity requirements are nearly
minimum. The AV requirements for these wide mission windows are shown
in more detail in figure 6(a) and (b). The least total mission AV
requirements for the long missions occur for the launch opportunities in
1977 and 1979. For the short-stay-time mission the least total mission
AV requirements occur during the 1983-84 and 1986 launch opportunities.
The launch dates and trip times for these missions are summarized in
tables I and II and figures T and 8.

The AV requirements shown in figures 3, L4, 5, and 6 are based on
a simplified mission profile. Earth-orbital launch begins from a circular
parking orbit at an altitude of 262 n. mi. The parking orbit is coplanar
with the Earth departure hyperbola. The Mars-orbital insertion (MOI)
and transearth injection (TEI) impulsive velocities are, of course,
dependent on the type of parking orbit which is used at Mars. The MOI




and TEI impulsive velocities are shown for the highest energy regressing
parking orbit, which shifts into alinement for departure and which is
continuously available throughout the Earth orbital launch window.

(The orbital elements of these orbits are illustrated later in figures 10
~and 12.) The Earth entry velocity is shown for an entry altltude of

400 000 ft and a vacuum periapsis of 20 n. mi.

The minimum AV missions.- Certain important constraints were
ignored during the search for the minimum AV missions. As stated
earlier, minimum total mission AV was the only constraint used for
mission selection. The most important constraint and the one most rele~-
vant to this report is the perihelion distance. In the case of the
opposition class missions, this constraint is important because the
spacecraft passes through the perihelion of the return trajectory as
shown in figure 2. In these cases, perihelion is uncomfortably close
to the sun.

To change the perihelion distance (at least for the case when the
return trajectory is single impulse) would increase an already high
AV requirement. As shown in figure 9, the perihelion radius is
increasing with each launch opportunity, and in the middle and late
1980's not only have the velocity requirements reached their minimum
value, but also the perihelion distance of the return trajectory has
reached a more reasonable value, and in 1986 the spacecraft would pass
just inside the orbital path of Venus during the return trip.

How Oblateness Affects the Parking Orbit Selection

Only secular rotation of the orbital plane and major axis due to
planetary oblateness is considered. Orbital realinement is produced
by rotation of the orbital line of nodes and the line of apsides, and
these rotations are primarily the result of planetary oblateness. The
rate of secular variation of the node and the periapsis vector is
given by

-3nJ, K¢
Q =~———¢L——————-cos i (1)

and




where
a semimajor axis
e orbital eccentricity
i inclination with respect to the planetary equatorial
plane
n mean motion of the parking orbit
J2 oblateness coefficient (assumed value for Mars = 0.002011
R planetary equatorial radius
és nodal regression rate
o periapsis precession rate

The term involving eccentricity divides out when the ratio of the
rates (és/és) is formed. This term merely scales or sizes the rates,

and the ratio of the rates is determined by the orbital inclination.
The important observation is that the eccentricity can be adjusted
independently to change the rates while conserving a particular value
of the ratic. The ability to change the eccentricity of the parking
orbit is of great value when it is necessary to force the parking
orbit to shift into alinement during arbitrarily short or long orbital
stay times.

There is a definite connection between the characteristics of
the parking orbit and the geometry of planetary approach and departure.
The orbital inclination is determined by both this geometry and the
ratio of the required angles of rotation of the orbital node and

periapsis vectors, AaQ and Amp. The orbital inclination is determined

so that the ratio of the orbital rotation rates, és/&s’ is equal to
the ratio of the required angles of rotation, AaQ/Amp. The important

effect is that orbital inclination will be frequently restricted to
several relatively narrow bands across the region from 0° to 180°.
Where these bands occur is, of course, dependent on the geometry of
the planetary approach and departure asymptotes.

8
The most recently adopted value of J. for Mars is given as

2
0.00197 in reference 9.




The stay time does not affect the inclination of the parking
orbit, but it does affect the orbital eccentricity.  For a given V.

geometry, as the stay time is shortened, accelerated rotation rates

are required to insure final alinement with the departure asymptote,
and progressively smaller orbital eccentricities are required to obtain
the faster rates.
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RESULTS

Al1l data relating to the parking orbit at Mars is measured with
respect to an inertial planetocentric coordinate system. The positive
Z-axis of this coordinate system points north along the planetary axis
of rotation. The XY-plane is defined by the planetary equatorial plane.
The positive X-axis is defined by the intersection of the planetary
orbit and equatorial planes and corresponds to the descending node of
the planetary orbit on the equatorial plane. The positive Y-axis is
90° east of X and completes a right-handed system. The coordinate
transformations between this system and appropriate geocentric and helio-
centric systems are a part of the conic interplanetary mission planning
program, and they are documented in reference 6.

Parking Orbits Available During Conjunction Class Missions

Eight to ten parking orbits were found during each long mission
from 1975 to 1988. The orbits are summarized in table III. All the
orbits for the long missions have periapsis altitudes of 200 n. mi.

For these long missions, the orbits generally exhibit a range of
eccentricities of from 0.3 to 0.9. The range of apoapsis altitudes is
from 2000 to 28 000 n. mi. It should be noted that these orbits repre-
sent a set of the highest energy parking orbits which shift into
alinement for departure. Each orbit, therefore, passes through the
required angles of rotation of the orbital node and the periapsis vector
only once. During the long stay-time missions, the parking orbits can
be forced to complete a full revolution or multiple revolutions of
either the orbital node or the periapsis vector prior to final alinement
with the departure asymptote.

The parking orbits exhibit smooth variations and are available
over a wide range of both the stay-time and the geometry of planetary
approach and departure. The variations in the Keplerian orbital
elements (a, e, i, R, and w) are shown in figure 10 for a representative
orbit which occurred during each long msssion®. The orbits shown in
figure 10 are for the nominal mission; and the outbound flight-time,
stay-time, and return flight-time for this mission are held constant
and the launch date from earth orbit is varied. (The nominal mission
is the mission at the center of the earth orbital launch window.) By
holding the flight-time constant and varying the earth orbital launch
date, changes were produced in the Voo vectors at both the time of

&The orbital elements are shown for an epoch corresponding to the
time of the Mars orbital insertion maneuver which occurs at the time of
periapsis passage on the approach hyperbola.



- 11

arrival and departure at Mars. The characteristics of the parking
orbits must change to accommodate the variations in the geometry of
planetary approach and departure.

Figure 10, therefore, shows the extent of the changes which can
occur for the parking orbits listed in table III. ’

An important observation 1s that the parking orbits seem to take
on characteristic values of inclination, and these inclinations are
widely distributed as shown in table III. Also, the inclination varies

smoothly and uniformly within narrow regions about the mean or charac-
teristic value.

Another observation is that the orbital eccentricity is loosely
correlated with the orbital inclination. The extent of this correlation
is shown in figure 11. This figure displays the inclinations and apoapsis
altitudes of representative orbits which were found during the long missions.

There is a definite bucket-shaped region where orbits are not found.
Note that low inclination orbits (both posigrade and retrograde with
respect to the planetary-axis of rotation) are possible but the
frequency of finding them is less than for higher inclination orbits.
(Perhaps by allowing a small discrete propulsive maneuver, these low
inclination orbits could be found more frequently. This problem needs
to be studied further.)

Parking Orbits Available During Opposition Class Missions

The technigque appears to be feasible for short-stay orbital missions
to Mars. For orbital stay times as low as 30 days, from five to eight
parking orbits can be found; these orbits are summarized in table IV.

All the orbits for the short missions have periapsis altitudes of

100 n. mi. The essential characteristic of the parking orbits for short-
stay missions is that their range of eccentricities is not quite as
large; many of the parking orbits are nearly circular. Although parking
orbits can generally be found with orbital eccentricities between 0.4 and
0.7, these solutions begin disappearing as the stay time is shortened
below 30 days. Solutions can generally be found for orbital stay times
as low as 10 days. The technique does not work for stay times below

10 days except in those cases where periapsis vectors of the approach and
departure asymptotes are already matched by some other technique, as

in the case of a powered-turn flyby trajectory at Mars. In these
instances, orbital eccentricities as high as 0.9 can be found.
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The variations in the orbital elements (a, e, i, 2, and w) are
shown in figure 12 for representative orbits which occurred during the
short missions. Like the long mission, the orbits shown are for the
nominal mission; and the flight time, stay time, and return flight time for
this mission are held constant. The launch date from earth orbit is varied
to produce changes in the V vectors at both the time of arrival and
departure at Mars. The characteristics of the parking orbits must,
therefore, change to accommodate the resulting variations in the VOo
geometry.

The orbits appear to be more sensitive to changes in the Voo

geometry when the stay time is shortened. The inclinations generally
correspond with those of the long missions, but there is greater fluc-
tuation of the orbital elements, and the variations are not quite as
smooth. The parking orbits may not be more sensitive to changes in the
V.- In many of the short missions, the V_ vectors are changing rapidly

both in magnitude and direction, and the parking orbits must change more
rapidly to accommodate these changes.

As was the case in the long missions, the orbital eccentricity is
correlated with the orbital inclination. The extent of this relation
is shown in figure 13, which displays the inclinations and apoapsis
altitudes of representative orbits which were found for the short missions.
The correlation appears to be even more definite than that seen for the
long missions. Again, there is a definite bucket-shaped region where
orbits are not found, but the solutions are much more closely grouped
and widely distributed.

The Effect of Stay Time on the Parking Orbit

As menticned in a preceding section, the stay time does not directly
influence the inclination of the parking orbit, but it does affect the
eccentricity. The effect of stay time is shown in figure 1Lk. This
figure shows the variation of orbital eccentricity with stay time for
a hypothetical, nonvarying V. geometry. Three orbits were found to

accommodate this geometry. Note that the eccentricity diminishes
uniformly as the stay time is shortened until the solutions for the
parking orbit disappear for stay times in the region of 20 to L0 days.

The region of stay times from 20 to 40 days is of great interest
in the case of opposition class missions. For the study presented in
this report, 30 days was selected for the stay time for all opposition
class missions, and the questions arise: Can longer or shorter stay
times be better; and, more important, can parking orbits be found if
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the stay time is shortened below 30 days? To answer these questions,
the opposition class mission in 1986 was chosen, and matched-conic simu-
lations of this mission were performed for stay times of 10, 20, 30, and
40 days. The resulting parking orbits are tabulated in table V.

The most important observation is the number and selection of the
parking orbits and their restriction to certain regions of inclination.
The inclinations commonly occur near 25°, 51°, 75°, 130° and 150°.

(The inclinations vary because of the changing geometry of departure.)
Noteworthy is the fact that the missions with the shortest stay times
have the lowest total mission AV requirements. Also, the parking orbit
with the highest eccentricity and lowest velocity requirement is retro-

grade. This last observation is common to all the missions investigated
in this report.

A second inspection of table V reveals the inclinations do not
change greatly as the stay time is varied, despite the fact that the
departure asymptote is changing. The worst thing that happens is that
some solutions are lost or new solutions are found. This fact points out
one of the limitations of the technique when it is used with the constraint
that no plane changes are allowed: orbital inclinations smaller than
the declination of either the approach or departure asymptotes are not
possible without propulsive plane-change maneuvers.

The Correlation of Eccentricity and Inclination

It has been noted that the orbital inclination is determined so that
the ratio of orbital rotation rates, és/és, is equal to the ratio of the
required angles of rotation, AaQ/Awp. Therefore, the inclinations are

determined by the geometry of planetary approach and departure (the
quantity AaQ/Awp) and by the characteristics of the orbital rotation

rates. The result is that when the required angles of rotation are

equal and in opposite directions, the rotation rates must likewise be
equal and in opposite directions. This situation can occur at inclinations
of U46.4° and 106.8°. Similarly, when the required angles of rotation are
equal and in the same direction, the rotation rates must be equal and in
the same direction. This situation occurs at inclinations of 73.2° and
133.6°.

As shown in tables IIT and IV, parking orbits alined by oblateness
often have inclinations near these equal-rate values. This is the case
illustrated in figure 15, which shows the egual-rate inclinations
super-imposed on a plot of the nodal and periapsis rotation rates.

In addition, shaded bands are shown indicating the inclinations where
parking orbits are commonly found. That there is a definite relationship
between the inclination and eccentricity is indicated by this figure.



1k

Consider two parking orbits with identical nodal and periapsis
rotation rates - one a near-polar orbit and the other a near-equatorial
orbit. The near-equatorial orbit has the larger eccentricity. For
example, if two orbits have inclinations of L4L6.4° and 106.8° (the
inclinations for which the rates are equal and opposite), the orbit with
the 46.4° inclination has higher rotation rates than the one with a
106.8° inclination. Thus, the eccentricity of the orbit inclined must
be increased to slow its rates enough to match those of the orbit
inclined 106.8°.

These considerations combine to limit the regions of occurrence of
regressing parking orbits; and the correlation of eccentricity is
strikingly evident if we examine any mission in detail.

In figure 16, the characteristics of parking orbits which occur
during the 1977 conjunction class mission are shown; and the apoapsis
altitude is plotted against orbital inclination. The regions where
parking orbits commonly occur are indicated by the shaded bars. The
width of the bar indicates the region of inclinations where solutions
are commonly found. The height of the bar shows the range of apoapsis
altitudes which are commonly found for the highest energy parking orbits
(i.e., orbits that shift through the required angles only once). The
bars therefore indicate the upper bound of the orbital apoapsis altitude.
Orbits with lower apoapsis altitudes can be found by requiring the node
or periapsis of the parking orbit to shift though integral multiples of
2m prior to final alinement with the departure asymptote. The orbits
found during this mission are summarized in detail in table VI.

The apoapsis altitudes and inclinations of orbits which occur
during the 1986 opposition class mission are plotted in figure 17.
Again, the shaded bars indicate the regions where the data points tend
to occur. The orbits found during this mission are summarized in detail
in table VII.
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CONCLUDING REMARKS

The use of gravitational perturbations for parking orbit alinement
appears to be useful in the areas of mission analysis and trajectory
definition for both the long and short missions to Mars. For both types
of missions, the orbital inclinations fall into narrow bands which
are widely distributed over the interval of possible inclinations.

Also, the orbital eccentricity is correlated with the orbital inclination,
and, in general, parking orbits with low inclinations have high eccentric-
ities. Also, the parking orbits often have remarkably high orbital
eccentricities, indicating that even with very small rates of rotation,
the orbital node and line of apsides need not shift through large

angles to effect orbital alinement. One cannot therefore discount the
effects of oblateness on the parking orbit even when those effects

are small.

For both types of missions the highest energy orbits have low
inclinations and can be either posigrade or retrograde with respect to
the planetary axis of rotation. The highest energy orbits always have
very low inclinations and are retrograde.

For the long stay-time orbital missions to Mars, a wide selection
(from 6 to 11) of possible parking orbits is available. These parking
orbits exhibit smooth variations in characteristics and are available
over a wide range of both stay time and the geometry of planetary
approach and departure. The range of eccentricities is generally from
0.4 to 0.8.

For the short stay-time missions, the use of gravitational pertur-
bations for alinement is more limited, but is nevertheless useful
since a number of orbits are generally available. Although there are
fewer orbits available (from 3 to T), the parking orbits for the short
missions exhibit a wider variation of both the inclination and eccentricity.
The orbits appear to be more sensitive to changes in the V_ geometry

for the short stay-time missions. The inclinations correspond to those
of the long missions. The range of eccentricities is generally from
0.0 to O.T.

The greatest number of orbits have high inclinations near T0°.
These orbits are found for any V_ geometry and are available during

each mission that was investigated. These orbits are nearly circular
for most of the short missions. They exhibit moderate -iciti
(from 0.3 to 0.5) for the long missions.

am e s +
(Y )




TABLE I.- EARTH-ORBITAL LAUNCH DATES AND TRIP TIMES
FOR MINIMUM AV MISSIONS TO MARS

Julian date Mars arrival

Calendar date of launch, }OQutbound date, Stay Return Total trip
of launch from (add ftight time, (add time, flight time, time,
Earth parking orbit 2 440 000) | days 2 440 000) days days days
2 629 349 2978 376 283 1 008
Aug 29, 1975 2 654 349 3003 351 283 983
2 679 349 3028 326 283 958
3407 332 3739 358 326 1 0le
Oct 15, 1977 3432 332 3764 333 326 991
3 457 332 3789 308 326 966
4 148 314 4 462 409 333 1 056
Nov 26, 1979 4173 314 4 487 384 333 1031
4 198 314 4512 359 333 1 006
4 905 302 5207 441 314 1 057
Nov 21, 1981 4 930 302 5232 416 314 1032
4 955 302 5257 391 314 1 007
5 665 280 5945 528 220 1 028
Dec 21, 1983 5690 280 5970 503 220 1 003
5715 280 5995 478 220 978
6530 200 6730 565 200 965
May 4, 1986 6 555 200 6 755 540 200 940
6 580 200 6 780 515 200 915
7 328 200 7 528 565 270 1035
July 10, 1988 7 353 200 7 553 540 270 1010
7378 200 7 578 515 270 985
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TABLE ll.- EARTH-ORBITAL LAUNCH DATES AND TRIP TIMES

FOR SHORT STAY TIME MISSIONS TO MARS

Julian date Mars arrival
Calendar date of launch, |Outbound date, Stay Return Total trip)

of launch from (add flight time (add time, flight time, time,
Earth parking orbit 2 440 000) | days 2 440 000) days days days
2 640 210 2850 30 240 480

Sept 4, 1975 2 660 210 2870 30 240 480
2 680 210 2 890 30 240 480

3410 210 3 620 30 230 470

Oct 13, 1977 3430 210 3 640 30 230 470
3450 210 3 660 30 230 470

4 180 240 4420 30 210 480

Nov 22, 1979 4 200 240 4 440 30 210 480
4220 240 4 460 30 210 480

4 900 260 5160 30 220 510

Nov 11, 1981 4 920 260 5180 30 220 510
4 940 260 5200 30 220 510

4 950 220 5170 30 220 470

Dec 31, 1981 4 970 220 5190 30 220 470
4 990 220 5210 30 220 470

5670 260 5930 30 230 520

Dec 21, 1983 5 690 260 5950 30 230 520
5710 260 59670 30 230 520

5 740 200 5940 30 230 460

Feb 29,1984 5760 200 5 960 30 230 460
5 780 200 5 980 30 230 460

6 530 180 6710 30 250 460

Apr 29, 1986 6 550 180 6 730 30 250 460
6570 180 6 750 30 250 460

7 330 160 7 490 30 260 450

July 7, 1988 7 350 160 7 510 30 260 450
7 370 160 7 530 30 260 450

S
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TABLE III.- SUMMARY OF MARS PARKING ORBITS WHICH OCCURRED

DURING THE CONJUNCTION CLASS MISSIONS

; . . Apoapsis . Mars orbit Transearth Total
Orbit | Inelination, ali)tisude, Period, Eccentricity | insertion injection mission
no. deg n. mi. hr AV, fps AV, fps AV, fps
(a) Earth departure date, August 25, 1975
1 69.88 5 66k.12 7.00 .57 3745.98 4394 .34 20 T768.81
2 1kh.10 9 313.21 11.38 .69 323L.95 3883.76 19 T48.07
3 72,78 2 hh1.153 3.78 .35 L7h2.58 5390.96 22 762.05
L 68,06 5 Thh.7T 7.09 .58 3731.22 4378.k9 20 738.77
5 1ke.27 7 828.35 9.51 .65 3403.25 4051.52 20 08L .41
6 69.91 2 581.91 3.90 37 L6770k 5324 .37 22 630.49
(b} Earth departure date, October 13, 1977
1 16.75 12 046.59 15.09 JTh 3007.19 3247.25 18 106.61
2 69.29 5 480.15 6.80 .56 3783.57 4020.60 19 653.35
3 112.1h L L402.88 5.66 .51 4o3k.15 Lot .22 20 160.61
4 142,33 8 10k.31 9.85 .66 3365.93 3606.,0L 18 824.26
S T1.67 2 386.66 3.73 .35 L766.75 5008.10 21 627.03
6 18.67 11 616.71 14,48 LTh 3037.36 3277.49 18 167.0k4
7 69.15 5 490.10 6.81 .56 3779.64 4019.85 19 651.7h
8 112.25 L 407.92 5.67 .51 4033.91 L27h .15 20 160.38
9 1k2.31 8 031.32 9.76 .66 3375.61 3615.85 18 843.80
10 71.32 2 hos.ih 3.75 .35 4758.77 L4997.67 21 608.71
11 172.93 20 335.60 28.28 .83 2646.14 2886.18 17 38k.64
(¢) Earth departure date, October 26, 1979
1 24k.59 10 835.68 13.40 .72 3335.41 3034.58 18 023.93
2 68.06 6 283.9€ 7.70 .60 3869.03 3567.97 19 091.27
3 113.19 L 930.34 6.21 .54 hik2 .31 3841.11 19 637.89
Y 1h1.48 8 170.44 9.93 .66 3598.16 3296.95 18 5L9.59
5 71.07 2 802.53 bho1s .39 L815.50 L515.12 20 98%.91
6 70.62 6 10h.13 7.49 .59 3900.94 3600.36 19 154.99
7 111.28 4 851.08 6.13 .53 4161.23 3860.52 19 675.6k4
8 141,94 9 559.4"% 11.70 .70 3448.89 3148.01 18 251.02
9 72.06 2 746.55 L.05 .38 4839.92 %538 .64 21 032.26
{d) Farth departure date, November 21, 1981
1 68.52 7 117.15 8.66 .63 Lh12,7h 3307.77 19 420.1k
2 139.76 8 241.85 10.02 .66 4265.86 3160.65 19 126.48
3 56.87 L 707.33 5.00 .53 L866.09 3761.76 20 327.3k
i 70.24 3 17h.68 L.4s b2 53k1.L46 4237.15 21 278.27
5 70.63 6 985.30 8.51 .62 4432.33 3327.99 19 459.03
6 140.39 9 ko2, k3 11.52 .69 4138.33 3033.45 18 871.23
7 29.09 9 9k8.7h 12.21 .70 4086.58 2982.0h 18 767.44
8 73.14 3 002.81 4.29 R 5L08.67 4303.63 21 411.00
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TABLE III.- SUMMARY OF MARS PARKING ORBITS WHICH OCCURRED

DURING THE CONJUNCTION CLASS MISSIONS -~ Concluded

. . . Apoapsis . Mars orbit Transearth Total
Oizlt Incllgitlon ’| altitude, Pei;Od *| Eccentricity | insertion injection mission
. g n. mi. AV, fps AV, fps AV, fps
(e) Earth departure date, December 21, 1983
1 37.30 13 205.13 16.76 .76 74k, 30 2837.97 19 709.10
2 137.13 7 762.90 9.43 .65 5219.44 3312.26 20 659.82
3 56.99 6 267.01 7.68 .60 Shh1.82 3535.99 21 105.01
i T1.62 4 020.42 5.28 .48 5951.55 Loks.65 22 124,65
5 142.03 17 780.30 23.93 .81 hs37.72 2631 .04 19 296.87
6 Th.59 8 087.6h4 10.96 .68 5075.16 3169.13 20 370.93
7 135.71 10 079.20 12.38 .71 Lg71.20 3064 .54 20 163.34
8 58.85 6 478.30 7.92 .61 sho6.12 3499 .46 21 032.08
9 72.95 3 927.06 5.18 .48 5979.75 LkoT2.91 22 179.29
(f) Earth departure date, May 4, 1986
1 77.15 11 453.4Y4 14.25 .13 4178.40 4180.48 19 887.11
2 132.82 8 885.22 10.83 .68 L405.80 LLo7.78 20 341.94
3 55.27 7 449.ks5 9.06 Ran 4578.76 L580.52 20 687.32
i 72.03 L 662.80 5.93 .52 5095.63 5097 .39 21 721.21
5 102.10 6 L71.6L T.91 .61 L4726.98 Lb728.75 20 984.10
6 135.40 1Lk 187.03 18.23 T 4010.93 4012.93 19 552.00
7 36.94 16 928.05 22.53 .80 3887.02 3888.54 19 302.73
8 134.69 7 439.10 9.0k an 4581.43 4582.92 20 691.92
9 58.16 7 895.18 9.60 .65 4520.38 4522,05 20 569.55
10 T7h.01 4 485.83 5.75 .51 5141 .40 5143.07 21 811.60
11 132.36 19 7L46.91 27.26 .83 3792.0k 3793.71 19 113.29
(g) Earth departure date, July 10, 1988
1 137.56 9 562.15 11.70 .70 3376.60 4925.71 20 279.93
2 58.01 6 627.48 8.09 61 3739.95 5289.17 21 006.32
3 72.14 4 185.40 5.4k .bo 4261.82 5811.24 22 050.29
I 97.38 6 638.04 8.10 .61 3738.71 —~| 5288.34 21 004.38
5 150.87 27 807.85 42,33 87 2652.55 4201.87 18 832.14
6 137.52 9 61k4.52 11.77 .70 3372.81 k921,09 20 272.04
T 57.86 6 616.26 8.08 .61 3743.27 5290.L9 21 011.63
8 72.03 4 194,01 5.45 kg 4261.07 5808.26 22 047.30
9 97.49 6 686.85 8.16 .61 3732.67 5279.98 20 990.75
10 149.70 26 225.53 39.20 .86 2680.83 4228.99 18 887.92




TABLE IV.- SUMMARY OF MARS PARKING ORBITS WHICH OCCURRED

DURING THE OPPOSITION CLASS MISSIONS

. . . Apoapsis . Mars orbit Transearth Total
Ozglt Incl;zatlon, altitude, peE;Od’ Eccentricity | insertion injection mission
: & n. mi. AV, fps AV, fps AV, fps
(a) FEarth departure date, September 1L, 1975
1 62.70 2 418,52 3.67 37 6725.35 20 450.99 40 147.16
2 139.86 10 1h1.12 12.33 72 5141.09 18 866.91 36 979.56
3 51.92 198.05 1.89 .02 8536.32 02 261.32 43 768.05
i 133.23 716.07 2.27 b 7925.23 21 650.62 42 547.32
5 81.49 1 450.51 2.84 .26 7298.89 21 022.72 b1 293.74
6 53.41 274 .85 1.94 .0k 843k .68 22 159.12 43 565.60
7 131.82 930.78 2.3 .18 7719.13 21 Lik .10 42 135.5h
(b) Earth departure date, November 2, 1977
1 3L4.36 3 308.90 L.k49 Ls 7098 .40 20 851.11 41 318.11
2 67.57 2 338.29 3.60 .37 7512.98 21 266.11 k2 147.43
3 50.88 124,75 1.8k .01 9387.05 23 139.48 L5 894.99
i 135.12 635.11 2.21 .12 8756.96 22 510.22 LY 635.48
5 77.22 1 841.43 3.17 .31 7787.68 21 540.17 42 696.92
6 131.45 1 189.80 2.63 o2 82U3.66 21 997.26 L3 609.7h
(¢) Earth departure date, November 22, 1979
1 72.13 1 796.07 3.13 .30 7052.34 18 726.60 37 775.97
2 135.7h 672.04 2.23 .13 7955.15 19 629.92 39 582.07
3 72.98 1 756.35 3.10 .30 7076.11 18 750.89 37 824.62
h 55.77 222.5h 1.91 .03 8L86.96 20 161.92 40 646.49
5 131.32 1 357.78 2.77 .2k 7349.68 19 025.52 38 372.63
(d) FEarth departure date, November 11, 1981
1 T72.45 1 8LE.6kL 3.17 .31 8043.35 15 840.1h 36 096.80
2 136.03 590.89 2.17 .11 9063.72 16 861 ..k 38 138.87
3 72.21 1 857.48 3.18 .31 8036.99 15 833.48 36 082.52
4 22.28 2 987.3h 4.18 43 7480.13 15 276.19 34 968.7h
5 56,14 252,20 1.93 .0k 9L70.Lk2 17 266.77 38 949.20
6 130.75 1 455.19 2.85 .26 8301 .47 16 099.08 36 613.55
(e) Earth departure date, December 31, 1981
1 78.72 1 833.02 3.16 .31 8306.52 16 582.10 36 803.54
2 50.99 155.63 1.86 .01 9856.81 18 132.11 39 903.46
3 134,38 632.57 2.20 12 9273.76 17 550.20 38 738.75
L 37.09 3 393.90 l.57 .46 7579.73 15 856.64 35 350.43
5 54.28 304.59 1.96 .05 965k .68 17 931.92 39 500.5L
6 131,11 1 071.18 2.5Y .20 8854 .38 17 132.29 37 900.64
(f) FEarth departure date, December 21, 1983
1 Th.65 2 678.76 3.90 Lo 6930.63 14 653.06 33 921.48
2 49.79 111.36 1.83 .00 898k .66 16 707.60 38 029.51
3 133.81 390.15 2.03 .07 8615.78 16 338.90 37 293.09
i 79.50 2 217.31 3.49 .35 7153.96 14 877.07 34k 367.50
5 56.1h Lh13.04 2.0L4 .07 8586.50 16 308.97 37 231.75
6 127.03 1 039.5k 2.52 .19 7948.57 15 671.22 35 957.15
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TABLE IV.- SUMMARY OF MARS PARKING ORBITS WHICH OCCURRED

DURING THE OPPOSITION CLASS MISSIONS - Concluded

. . . Apoapsis . Mars orbit Transearth Total
Orbit Inclgn&tlon, altitude, Peg;od, Eccentricity insertion injection mission
no. °& n. mi. AV, fps AV, £ps AV, fps
(g) Earth departure date, February 29, 198k
1 87.50 18L5.41 3.26 .29 7576.74 15 854,30 35 675.77
2 50.07 2hh 0k 1.99 .01 9003.52 1T 281.75 38 529.82
3 39.94 4T757.92 6.03 .53 6Lskh .89 14 733.64 33 h32.03
4 72.53 L786.90 6.06 .53 6L48.29 14 727.38 33 418.96
5 52,27 370.09 2.08 Noln 88L43.02 17 121.33 38 207.76
(h) Farth departure date, April 19, 1986
1 83.70 1803.71 3.14 .30 688L4 .85 1h Lh6.12 32 784.75
2 52.91 337.53 1.99 .06 817k.84 15 736.77 35 365.12
3 129.91 691.%0 2.25 .13 7772.80 15 334.91 34 561.66
I 31.33 3959.02 5.12 .50 5957.45 13 519.13 30 929.41
5 T1.62 3259.53 L. LY s 6190.66 13 752.58 31 396.05
6 148.67 9186.96 11.09 .70 5052.50 12 61L4.44 29 120.40
7 51.89 289.46 1.95 .05 8236.33 15 797.48 35 486.59
8 130.98 603.72 2.18 .11 7865.59 15 L26.9h 3k Th5.80
(i) Earth departure date, June 27, 1988
1 70.32 1265.21 2.69 .23 8080.41 14 650.97 35 010.69
2 14.ko 2463.51 3.71 .38 7348.41 13 918.26 33 545,72
3 136.03 1851.36 3.18 .31 T7678.6k 14 250.46 34 208.81
i 162.53 9321.11 11.26 .70 5861 .24 12 432.95 30 573.98
5 T0.hk 1261.67 2.69 .23 808L4.00 14 654.20 35 017.48
6 138.30 955.76 2.45 .18 8340.51 14 911.45 35 531.65
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Figure 3 .- The variation of mission velocity requirements for minimum AV missions.
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Figure 6.~ The variation of mission velocity requirements for the short stay time missions,
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Figure 10.- Continued.
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